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ABSTRACT

Radiative transfer is analyzed in composite materials of 2 or 3 layers

relative to evaluating ceramic materials being developed for high
temperature applications. Some ceramics are partially transparent for

radiative transfer. Their refractive indices are greater than one which
influencesinternal reflections and emission. The thermal behavior of

single and composite layers has been obtained in the literature by
numerical solutions of the radiative transfer equations coupled with
heat conduction, and with convection and radiation at the boundaries.

Two-flux and diffusion methods are investigated to obtain
approximate solutions using much simpler formulations than for exact

numerical solutions. The two-flux method yields excellent results for

gray and two-band spectral calculations including isotropic scattering.

If one layer is optically thick the analysis shows how the diffusion

method can be used in that layer and be coupled with the two-flux

method in an adjacent layer. Comparisons with numerical solutions

of the transferequations show that this provides accurate temperature
distributions and heat fluxes.

NOMENCLATURE

a

Cj
CON

C o

D

FS,FL

G

GS,GL

H

ht,hz
k

K

N

NOR

n

absorption coefficient of material in layer, m"t

coefficients defined in Eq. (17)

in_gration constant in energy equation, W/m;

CON = CON/DoTv (

speed of electromagnetic propagation, rWs

thickness ofcach layer in composite, m

blackbody fraction in small and large frequency
bands

flux quantity defined in Eq. (la), W/m 2, _J = G/oTtl'

values of G in bands at small and large frequertcies

dimensionless convection-radiation parameter, h]oT=l 3

heat transfer coefficients at boundaries, W/m=K

thermal conductivity, W/InK

extinction coefficient, a + o,, m "t

conduction-radiation parameter, k/oTst3D
normalization factor

refractive index of a layer

q

q_

q;,q;
¢
qS,qL

R(n)
T

t

T., ,T._
x

heat flux, W/mS; q = q/oTsl (

radiative heat flux in composite, W/m=; _. = qr/oTst (
radiative fluxes in + and - x directions, W/m =

externally incident radiation flux, W/m2; _o. q_/oT,14

radiative flux in bands with small and large frequencies

function of refractive index defined in Eq. (19)
absolute temperature, K

dimensionless temperature, T/T==

gas temperatures on two sides of composite, K

coordinate in a layer, m, X = x/D

Greek symbols

optical coordinate in a layer Kx; Ko, optical
thickness, KD

v frequency of radiation
p reflectivity of interface

o Stefan-Boltzmann constant, W/m_K (

o, scattering coefficient in a layer, m "_

o scattering atbedo in a layer, oJ(a+o,) = oJK

Subscripts

a,b...h the interfaces of a three-layer composite (Fig. 1)

c value at cutoff frequency

D based on length D

g gas on either side ofcomposite
h,s higher and smaller refractive indices

j index indicating j th layer in a composite
r radiative

S,L spectral bands with small and large frequencies

tot total heat flux by combined conduction and radiation

v frequency dependent quantity
1_ exterior quantities at outside boundaries (Fig. 1)

INTRODUCTION

The development of ceramic materials for high temperature use is

critical for advanced aircraft engines where high thermal et_cicncy is

required. Some ceramics are partially transparent to radiant energy in

at least some portions of the wavelength spectrum. For high

temperature surroundings, such as in a combustion chamber, infrared

41



and visible radiation may penetrate into the material and provide

internal heating,, this can affect internal temperatures of ceramic engine

parts and coatings.
For elevated temperature levels, radiant emission within the

material can be large. This is especially tree for materials with high

refractive indices since internal emission depends on the refractive

index square. In addition to internal emission, radiant absorption and

scattering, and heat conduction contribute to the energy transfer

process. It must be determined when radiative processes become

significant, and how large their effects are compared with conditions

when materials are assumed opaque. Another aspect is to determine

whether partial transparency can help equalize temperatures to reduce

thermal stresses, reduce maximum temperatures, and control
temperature levels in the material.

In composite layers the refractive indices ofthe materials produce

surface reflections that enter into the radiative transfer. Since emission

within a material depends on the square of its refractive index, internal

emission can be much larger in s ceramic than in a gas. Radiation

leaving through an interface cannot exceed that from a blackbody, and

is prevented from doing so by total internal reflections that occur when

radiation is passing into a material with a lower refractive index.

Internal scattering must be examined as it can influence the
temperature distribution for some conditions.

TI¢_ is an extensive literature on radiative transfer in plane layers

originating from the development of theory to study radiation in stellar

and the earth's atmospheres. Another important subject studied since
the 1920's is radiation by furnace gases. As a result, many

investigations of radiation within media have been for gases where the
refractive index is very close to one. An important area involving

higher refractive indices and hot materials with significant internal

emission, is predicting heat treating and cooling of glass plates

(Gardon, 1958). The literature has been briefly reviewed in our

previous work (Spuckler and Siegel, 1993, 1994). In these papers,

temperature distributions and heat flows in partially transmitting

materials with high refractive indices are predicted by analyses using

the radiative transfer equations coupled with heat conduction. The

governing integral equations, including the scattering source function

for some of the work, are solved numerically. Each exlerior boundary

is heated by radiation and convection, and diffuse interface reflections

are included. Results are given for a layer with two spectral bands in

the absorption coefBcicnt, and for a composite of two gray layers. For

use in the development of approximate solutions, the numerical

solutions wen: exlended in Siegel and Spuckler (1994)to a three-layer

composite including up to three spectral bands in each layer. Isotropic
scattering is included. This simulates a ceramic layer with a

reinforcing layer, or coatings of other ceramic materials for protection

against corrosive atmospheres such as combustion gases. Various

amounts of isotropic scattering are included to simulate internal

reflections by a granular or reinforcing structure.

The formulation and solution of the exact spectral radiative transfer
equations including scattering is rather complicated; hence it is

desirable to develop more convenient approximate methods such as the
two-flux method if these will yield accurate results. The two-flux

equations arc given in Sidall (1972), and Siegel and Howell (1992).

The two-flux method was shown in Malpica et al. (1986), and

Tmmante and ]vialpica (1993) to give accurate results for a gray layer

with a refractive index of one between boundaries with specified

temperatures. Two-flux and diffusion solutions, and combinations of

the two for layers with optically thin and thick spectral bands, were

derived in Siegel and Spuckler (1994) for materials with refractive
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FIG. 1 GEOMETRY AND COORDINATE SYSTEM FOR
TWO-FLUX ANALYSIS IN A COMPOSITE OF THREE

ABSORBING, EMITTING AND SCATTERING
SEMITRANSPARENT LAYERS.

indices larger than one, and for heating conditions such that the

boundary temperatures are not specified and must be determined

during the solution. These providc a simplified formulation, and were

found to be very accurate for a single layer by comparisons with exact
solutions. In the present work further analysis is made to treat

rnultilayer composites of materials with refractive indices larger than
one. The two-flux method is found to work well for layers with optical
thicknesses less than about 20. It is joined here with the diffusion

solution for situations where there is an adjacent optically thick layer.
This yields excellent results for two band spectral calculations in

composite layers, including an optically thick layer, and with isotropic

scattering included.

ANALYSIS

The Two-Flux Method for Radiative Transfer in a Three-

Layer Gray Composite

A composite layer of absorbing, emitting, and isotropically
scattering materials has convection and incident radiation on each of

its external boundaries as shown in Fig. 1 for a three-layer region. The
two-flux method is developed here to obtain the temperature

distribution and heat flux through the composite. To begin the
development a three-layer composite of gray materials is considered.

Adjacent layers each have a different refractive index. The resulting

two-flux relations provide a foundation to analyze a larger number of
layers with banded spectral properties. Relations are given for two

spectral bands in each layer of a two-layer composite. The two-flux

method is also combined with the diffusion method to treat multiple
layers with one or more layers being optically thick. Results are

o0_npar_ with numerical solutions ofthe radiative transfer equations
to determine the a_curaey of the two-flux method for composites with

layers havin 8 refractive indices greater than one. The boundaries and

interfaces between layers are assumexl diffuse.

The Two-Flux and Energy Equations. The two-flux

equations used here correspond to the Miine-Eddington
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approximation (Sidall, 19"/2, and Siegel and Howell, 1992). The
radiative fluxes eL."and q/arc respectively in the positive and negative

directions as in Fig. 1 ; each flux is assumed isotropic. A flux quantity

G, and the net radiative flux q, in the x direction, are related to qr" and

q{ by,

G = 2(qr"+ qr) ; qr = qr'- qr- (la,b)

Equations(la)and (Ib)arcsolvedforq,*and o; intermsofG and %

togivethe usefulforms,

q;: ¥

The two-flux equations including scattering are given in Siegel and

Spuclder (1994) as,

1 dqr (l_Q)[4n2oT4(x)_O(x)] (3)
Kdx

I d...G.G= _ 3q:x) (4)
Kdx

A thirdrelation,in additionto Eqs. (3) and (4),isthe energy

equation.For steadystateconditionswithout internalheatsources
such as chemical or electricalheating,the heatflow by combined

conductionand radiation,qm, isconstantthroughthecompositeand

isgivenby,

qt_ = -k dT(x) + qt_x) (5)
dx

Equations (3),(4)and (5),subjectto properboundary and interface
conditions,arctob¢ solvedforqr(x),G-(x),and T(x)withinthelayers

of thecomposite.An itcmtivcsolutionisused,and therequiredforms

of theequationsarcnow developed.

The ch(x)inEq. (5)iseliminatedby usingEq. (4).The resulting

equationhasa firstderivativeof bothT(x)and G(x) and is integrated

overx ineachofthe layersto yield

°i(xJ----_)+ con j j= 1,2,3 (6)
kjTj(xj)= - q_xj- 3Kj

where CONj isan integrationconstantineachlayer.EvaluatingEq.

(6) at xj=0 and xiffiDj relatesthe values of q_ and CON i to the

boundary valuesofTjand Gj foreachlayer

CON j= kjTj(0)+ Gj(0.._..._)j = 1,2,3 (7a)
3Kj

q_I)j = - k,T,(D:)- Gj(Dj) + CON j = 1,2,3 (Tb)
J s J 3Kj J

Equations (3) and (4), integrated with respect to xi in each layer,
will be used later in the forms,

%(xj) = qdO)*l_l- n?fo't ' o'rj'(xp-ofl ] j j = 1,2.3 (8)

O)(xj) = Oj(0)-3Kjfe_ qd(xj)dxj j = 1,2,3
(9)

Conditions at External Boundaries. The boundary conditions

are now developed. Bceaus¢ radiant absorption is a volume process,

in the two-flux method there is no absorption at a boundary surface

since a surface does not have any volume. Hence at each exlcrnal

boundary ofthe composite, x_ = 0 and x3 = Dj, convection is balanced

by internal heat conduction. Since the total energy flow by radiation
and conduction is constant across the entire composite region, the q_

can be expressed at each external boundary as the sum of external
convection (which is equal to internal conduction) and intcmal

radiation. This yields at x L= 0 and x_ = D 3,

qta = ht[T=l- TI(0)] + qrl(0)
(10a)

q_ = h2[T3(D3)- Tt2] + qr3(D3) (10b)

At each external boundary the radiative flux leaving the internal

side of the surface and going into the layer, is equal to the sum of

transmitted externally incident flux and reflected internally incident

flux. This yields the relations at x, = 0 and x3 = D3,

4-

qrl(0)= (l- Pa)qr_ + Pbq_ (0)
(lla)

qr3('D3)= (1- ph)q_ + piIq_(D 3) (llb)

Equations (2a,b)are used to eliminatethe q*, and q'r3fromEqs.

(Ila,b)to obtainexpressionsfor Gl(0) and G3(D3) interms of the

radiativefluxeseL.l(0)and %(D3) insidethe composite at the

boundaries,

GI(0 ) = 4 I- p. q:__ 2 I+ Pb qrl(0) (12a)

I- Pb I- Pb

4 1- Ph q_G3(-D3 ) = _ + 21+PZ qr3(D3) (12b)

I- P= I- P=

Relations at Internal Interfaces. At the interface x= = D, (x: =

0) between layers 1 and 2, the q* and q" are related in terms of

transmitted and reflected energy by,

q_(Dt) = (1- pd)q_0) + Pcqr_(D1) (13a)

At this interface there is also continuity of radiative flux and

temperature so that,

qrl(1)t) = q_(0) ; TI(D 1) = T2(0) (13b,c)

Equations (2a,b) are used to eliminate q" and q" from Eq. (13a) and

(13b) is then used to eliminate q_(0) to give,

O2(0) = _ I(D 1)- 2 Pf+_P dqd(D l) (14a)
l-pal I-P d

Similarly at the second internal interface x 2 = D2 (x_ = 0),
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1- p, G2(D2)- L"p'+ p------_fqt2tL_2)_" (14b)G3(0)
1 -pf 1 -pf

Relations for Additional Quantities. A relation for q,_ is now

obtained. Equation (6) is solved for Tj in each of the layers at the
internal interfaces. Then continuity oftcmpcrsture, as in Eq. (13c), is

applie.d to yield at the two interfaces,

- q,.._-_ - !_ * CONj = - I GJ'l(0) -,- CONj't j=l,2 (15)3 h 3 kj.,
Equation (15) is written for j = 1 and 2, and the two cquations are

added to eliminate CONy Equation (Ta) forj = 1 and Eq. (7b) forj =

3 arc respectively combined with Eqs. (lOs) and (10b) to eliminate the
unknown surface temperatures Tl(0 ) and T_(D_). The resulting two

equations are combined with Eq. (15) to eliminate CON l and CONj.
The expression obtained is solved for q_, the total heat flow by

combined conduction and radiation,

$

_ [Gj(0)-Gj(Dj)] + qrt(O) ÷ qo(D3)

3k , j "x''-T': h, h,
q_, = (16)

When the correct solution is reached in the iterative method, the

change in G across the entire composite, Ol(0 ) - G3(D3) as given by

Eqs. (12a,b), should equal the sum of the changes in (3 across each of

the layers as calculated from the integral in Eq. (9) and the change

across each of the internal interfaces as obtained from Eqs. (14a) and

(14b). To enforce this overall condition during the iterative solution

the qc(xj) in all of the layers are normalized at each iteration by
dividing by the factor NOR obtained from this condition on O

3

3 E C jKjf:Jq _(xj)dxj
j=l

2 Po+Pa 1-Pe .... Pe÷Pf• qrl(vt) + z-- qr2(D2)
1-Pd l-p/ l-p t

NOR. = (17)

C_O_(0)- G3t'D 3)

The Cj coefficients are

l-p¢ 1-pc 1-p e
C ! - , C 2- , C3=1.

l-pd l-pf l-pf

To obtain expressions for the integration constants CONj, Eqs.
(7a) and (10a) are combined to eliminate Tj(0) to obtain for CON l

[ ]
qrl(0)- q_ GI(0)

CON t = kt I TIlt* hl l+ --3KI (18a)

SimilarlyCON 3isobtainedby eliminatingT3(D3)from Eqs.(7b)and

(10b),

CON 3 __qtaD3 + k.s[T#+ qm-qo(D3)] +h2 G_(D_)3K3 (ISb)

WithCON l-known from Eq. (I8a),an expressionforCON sisfound

by usingEq. (7a)forj = 2 and eliminatingT2(0) by notingthatit

equalsTl(Di)found from Eq. (7b).Thisgives,

= k2 k2[G2(0) Gt(Dt) l
CON 2 --(CON t- qt_l) + -- (18c)

k I 3 [ k:zK 2 ktK t J

Solution Procedure by Iteration for a Gray Three-Layer

Composite, The previous relations arc solved by iteration to obtain

the temperature distribution in the composite and the total heat flow.
Before carrying out the solution the equations were placed in

dimcnsinnlcss form using the dimensionless parameters and variables
in the Nomenclature. Dimensionless forms arc not given here as they

somewhat duplicate the previous relations. Some dimensionless forms

are given in the next section for a spectral two-band solution.

Tbe iterafive solution (given in terms of dimensionless quantities)

begins by guessing values of th,c dimensionless radiative fluxes q0(Xj)

forj = 1,2,3. Using Gl(0) and G_(I) calculated from Eqs. (12a_), the
_'Xj) arc normalized by dividing by NOR from Eq. (17);, The G,(X 0

distribution is then obtained from Eq. (9); this also gives Gt(I). Using
_Jl(1), the _2(0) is obtained from (14a), and the G2(X2) distribution is

calculated from Eq. (9). The change _ _ across the second internal

interface is found from Eq. (14b), and G3(X3) evaluated from Eq. (9).
The q,0_ is calculated from Eq. (16), and the C_Nj forj = 1,2,3 are

found from Eqs. (18a,b,c). The tj(Xj) forj = 1,2,3 are evaluated from

Eq. (6). New qo(Xi) arc obtained from Eq. (8) using the starting
condition in each successive layer that q, at the beginning of that layer

equals 0_ calculated at the end of the previous layer.
To begin s new iteration a damping factor is applied between the

new and old _(Xj) to kccp the iterative method stable. A small
damping factor, such as 0.001, is needed; less damping is required in
layers with scattering. Computing time for a solution converged to a

relative error of 10 "4depends on the integration method used in Eqs.
(8) and (9). Solutions using the trapezoidal rule took less than 6

seconds on a VAX computer. The numerical solution of the radiative
transfer equations using a modified program from Spuclder and Siegel

(1994) required at least 12 times more computing time.
Surface reflections were modeled by using integrated averages of

the Fresnel reflection rets_ons. For diffuse incidence this gives (Siegel

and Howell, 1992, p. 115),

p(n). R(n)= I. (3a÷IXa-1), n 2(n'-1)21a( n-I /
6(n+ 1)_ __'_+1J n -n_/_ (19)

2nS(nl÷2n-1), 8nl(n4+l) In(m)
(na÷lXn*-l) (nX+lXn+-l) *

Equation (19) is for reflection by a material with higher refractive
index; n_ and n, are the "higher" and "smaller" n values (incident

radiation is from within the _ material). Allowing for energy incident
at directions larger than the angle for total reflection, the p(n) for

diffuse radiation propagating from a higher to a smaller refractive

index material is found from Richmond (1963),

p(n) = I- l--_[l-R(n)] n-ah/a . (20)
n"
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Two-Flux Method for Two Spectral Bands in Each Layer

of a Two-Layer Composite
A two-band calculation in each layer is used to illustrate the

spectralapplication of the two-flux method for a two-layer composite.
The S and L designate bands with small and large frequencies. For a
quantiiy such as O,(x,v) the band notation is

GS (x) = f0 Gv(X'V)<Iv • GL (x) =/" "Ov(x,v)dv
.r y¢

For a two-band calculation each of Eqs. (12) has two parts, one for

each frcqucncy rang©. For example, Eq. (12a) in dimensionless form

gives in the small and large frequency ranges,

(3SI(0) = 4 1- p= t]Srl- 2 | +P'--------_b(]Srl(0) (21a)

1- Pb 1- Pb

GLI(O ) = 4 1- p. _Lr_,_ 2 1+ Pb _Lrl(O )

1- Pb 1- Pb

(2lb)

where the p a_ independent ofv. Similar relations arc written from
Eq. (]2b) for OSz(l) and'_]-a(1) at the outer boundary of the second

layer. Equation (16) for qt= contains a contribution from each of the
two bands, so for a two-layer composite

.1- t==4 HI

(22)

This also occurs in Eq. (6) for the temperature distribution in each

layer,

N.I[ OSflX__OLjCX__t]mXj.CdNj j-l,2 (23)tp{Xj)" - 3KDJs 3¢,_.

Equation (8) forthe radiativefluxiswrittenforeach band ineach

layer.For the band withsmallfrequenciesineitherlayer(j= 1,2),

_i8,flXj) = _S_(0)*r_l - Q_£X'[4ej'tj'(X_'SC_- (}.q[X_]dlXj (24)

The q]._(Xj) for the large frequency band is similar. The FS(Xi) is
the traction of blackbody emission in the small frequency range

corresponding to the tcmparature Tj(xj) = tj(Xj)T,i.
The change in_ when crossing the internal interface is written for

each of the bands. For example for the small frequency range, from

Eq. (14a),

6s2(0) = l-p= 6s_(1)- _ P*+P____Aqs,,(]) (2s)
1-p a l-p d

The normalizationfactorin Eq. (]7)iswrittenfora two layer

compositeineach ofth© bands. For thesmallfrequencyband,

3 1-o_1__,%sf01qs ,1(x pdX I

I. Po+Pd.

+ 3*¢D2S/° qSez(X2)dX2 +2 _qSd(1)
l-p d

NORS = (26)

1-P° 6s,(0)- 6s2(1)
l-p d

The integration constants in Eq. (18) are written in each of the two

layers as (including contributions from both bands),

[1* _S,_(0)+r:lL,x(0)- r:_ ], 6S j(0), 6,Lt(0)C6N1
H, J _ _ (27a)[

t,a qSr2(l)+_q_(l)-_]+ (2S2(1) + (}L2(1) (27b)

The solution by iteration follows the same stepsoutlined for gray

layers except there are now two 0a(X ) in each layer, one for each
spectralband. Following the procedure for the gray case, calculations
arc made in each band. The bands contribute to the temperature as

given by Eq. (23). The iteration begins by estimating qS,CX) and
qLA"X) for each band by =king into account that 0=(X) tends to b¢
small in a band where _D is large, and that the radiative energy
distribution in the bands shifts to smaller v as t(X) decreases.

Converged solutions for the two-flux method using the trapezoidal rule
for integration required up to 5 minutes on a VAX computer. The
exact numerical solution required about twice that time or longer.

Two-Layer Solution Using the Two-Flux Method in the
First Layer and the Diffusion Method in the Second Layer

When the optical thickness of a layer is large, the radiative
diffusion method is very useful for making predictions for either a gray

or spectrallayer(Siegeland Spucldcr,1994). A two-layergeometry

isconsidaedherewithan opticalthicknessof about20 orlessineach

ofthebendsofth¢firstlayer,and witha largeropticalthicknessinthe

secondlayer.The two-fluxmethod isusedinthe firstlayerforboth

spectralbands. The second layerisgrayand isanalyzedwith the

diffusionmethod. The analysisshows how thetwo-fluxmethod is

joinedwithadiffusionsolution.The requiredrelationsdraw upon the

previoustwo-fluxanalysis,but thereareseveralnew features.

The firststepinthe itcrativesolutionisto us: Eqs. (21a,b)to

calculate_St(0)andGL_(O) attheouterboundaryof thefirstlayerfor

each of thespectralbands. The radiativeenergy balanceatthe first

surfaceofthesecond layer,Xt = l,isthenusedtoobtainrelationsfor

_S=(1) and _L_(1). Since the second layerisgray with radiative

diffusion this balance gives,

= - + pcqrl(l) .

Equations (2a,b) are used to eliminate q" and q" and the result is

written for each band to give,

(}$_(1) = 4n_ I_(0)FS[_(0)T=_] +2 T------qSl(1)
z-p=

(28a)
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2,1 |+Pc.

6L!(1 ) = 4n I t_C0)FL [t2C0)T #] +2 1_-_oqL t( 1 )
(28b)

where the FS and FL are blackbody fractions that depend on the

temperatures shown and on the cutoff frequency of the bands.

Equations (28a,h) depend on the interface temperature h(0) which is
an unknown; hence the _JSI(I) and _Lt(1) must ix: determined

simultaneously with Eqs. (29a,b,c) that follow.
A set of three simultaneous equations is now developed. In a

similar manner to Eq. (22) the two-flux relation for q_ in the first layer

is written as

t_Sl(0)- GSt(1) (3Lt(0)- (}Ll(1)
+

3NIKDt s 3NIKDIL

451(0) + _L1(0)
+ + 1 - t2(0)

Ht

_1_ =
1 1

(29a)

Ht Ni

The combination of conduction and radiative diffusion across the

second layer gives a relation for q,= as derived in Siegel and Spuclder

(1994),

(]ua = Na[t'2(0) - _(1 )] + 4n22 it:(0)-t;(l )] (29b)

3teD=

The convectiveand radiativeenergybalanceattheoutsideboundary

X2 = 1 of the second layer gives,

2 4
_ = H_[hO) - to]+ (1- p,)n2 [h(1) - _ (29c)

Using Eqs. (28a,b) as constraints, Eqs. (29a,b,c) are solved
mnultaneously for the interface and boundary temperatures t2(0), and

h(1), of the diffusion layer, and the hut flow i_ through the

composite. The temperature distribution in the second layer is then
calculated by solving Eq. (30) numerically for hCXj). This was derived
in Siegel and Spuckler (1994) by using radiative diffusion in the

energy equation,

L2CX2) _ t2(1)+ 4n_ [¢CX2) - t24(1) ] 8,taCl-X2)= (30)

3N2KD2 N2

Converged solutions using the trapezoidal rule required less than 1

minute on a VAX computer, exact numerical solutions took about 20

times longer.

RESULTS AND DISCUSSION
Tim two-flux method was developed in Siegel and Spuckler (I 994)

for a single gray layer with refractive index n > 1 and external
convective and radiative conditions. Excellent agreement was found

with numerical solutions ofthe exact radiative transfer equations. The

two-flux method is further devcloped here for multiple layers that are

either gray or have two spectral bands in each layer. An extension is
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FIG. 2 TWO-FLUX RESULTS IN COMPOSITE OF TWO
GRAY LAYERS SHOWING EFFECT OF A RADIATIVE HOT
SIDE SURROUNDING TEMPERATURE DIFFERENT FROM

THE GAS TEMPERATURE. COMPARISONS ARE SHOWN
WITH NUMERICAL SOLUTIONS: nl = 1.5, n2 = 3, c_, = 1.04 -

1.44, _a = 0.254. to1 = 1, t_ = 0.25, HI = Hz = 1, NI = N2 = 0.1.

also made to generalize the results for the radiative boundary condition
on the hot side ofthe composite. The incident radiative flux on the hot

side is qOn= oT'a which is the flux from blackbody surroundings with

an effective temperature Ta. In Siegel and Spuckler (1994) the results

are for Ta = Tst where T,_ is the temperature of the gas providing
convective heating or cooling on the hot side at x_ - 0. In the results

that follow, the T,_ can be greater or less than Tsv This shows the

effect of the gas either cooling or heating the surface relative to the

radiative energy being supplied.

Two-Flux Results for a Composite of Two Gray Layers

Figure 2 shows two-flux results for a two-layer composite with the
first and second layers having optical thicknesses of I and 10 and
refractive indices of 1.5 and 3. The first layer, that is exposed to the

radiation on the hot side, is somewhat optically thin. For the results

shown T,,/T s, is 1.0, 1.2 and 1.4. For T,I/Ttl - 1.2 and 1.4 there is
sufficient radiative absorptkm within the first layer that the temperature
is a maximum within that layer. Some of the absorbed radiation is

being removed by convection at the boundaries. This results in a large

temperature change near the boundary that can produce thermal
stresses. For T,t/T,t - 1 the gas temperature is the same as the
radiative surroundings and the temperature gradient is reversed at the

hot surface. This is the result of cooling by radiation and conduction

through the entire composite by the lower temperature gas and

environment at the outside boundary of the second layer.
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FIG. 3 COMPARISONS OF TWO-FLUX RESULTS WITH
EXACT NUMERICAL SOLUTIONS OF TRANSFER
EQUATIONS FOR COMPOSITE OF THREE GRAY LAYERS:

nl = n_= 1.5, n 2 = 3, ¢'. = 1 and 1.24, _ = 0.25 +, t_l = 1, t_ =
0.25, H1 = H2 = 1, N+ = N3 = 0.1, N2 = 0.2.

]:or some of the cases comparisons arc shown with "exact"
numerical solutions of the radiative transfer equations using the

computer program of Spuckler and Siegel (1994). Very good

agreement is obtained for the temperature distributions and the total
heat flux by combined radiation and conduction. The two-flux

method yields good predictions for a composite of two layers and for

conditions when there is large incident radiation.

Two-Flux Results for a Composite of Three Gray Layers

Figure 3 shows results for a composite of three gray layers with n

= 1.5 in layers 1 and 3, and n = 3 in layer 2. The optical thicknesses

range from 0.1 to 2 in layers 1 and 3, and from 0.2 to 4 in layer 2.
The "exact" numerical results were obtained by extending the

computer program of Spuck]cr and Siegel (1994) to three-layers. As

shown by the lower set of curves, that arc for three different levels of

optical thickness, the two-flux method yields good temperature
predictions when r,o in each layer is of order one. The two-flux results

follow the pronounced temperature curvature near the boundaries and
the internal interfaces. There is a little more deviation from the

numerical solution when the optical thicknesses arc small as shown by

the two uppemx_ curves on the figure that arc for T=,/T== = 1.2. The

heat flux through the layer by combined radiation and conduction is
predicted within 7% by the two-flux method as shown by the values

on the figure.
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FIG. 4 TWO-FLUX RESULTS IN COMPOSITE OF TWO

LAYERS, EACH WITH TWO SPECTRAL BANDS. EFFECT
OF HOT SIDE SURROUNDINGS TEMPERATURE
DIFFERENT FROM THE GAS. COMPARISONS WITH
NUMERICAL SOLUTIONS. OPTICAL THICKNESS OF

BANDS IN ORDER OF INCREASING FREQUENCY: a_D1 =

5, 0.1, av=D2= 10, 0.2 and cutoff frequency, vJc0Tg,= 1/4000;
n_= 1.5, n2= 3, _', = 1 and 1.24, _ = 0.254, tg_ = 1, t_ = 0.25,
H1 = H2 = 1, N I = N 2 = 0.1.

Two-Flux Results for a Two-Layer Composite with Two

Spectral Bands in each Layer
For the results in Fig. 4 the spectral absorption coct_cient has two

bands in each of the layers: for small v, v ¢/coTsl < 1/4000, a, sD t = 5

and a, sD: = 10, while for large v, VJCoT+l > 114000, a,,D I = 0.1 and
a, gD2 = 0.2. The selected value of the cutoff frequency v= divides the

blackbody spectrum at Tv into approximately two equal parts. The Nt

= lq_, and is lh¢ same as on Fig. 2, and the temperature ratio T,L/Ts_ is
I and 1.2. TI_ tcmpersturc distributions show the same general trends
that were discussed for gray layers in Fig. 2. For the two-band

calculations the temperature distribution and total heat flux results
from the two-flux method compare very well with the numerical

solutions ofth¢ radiative transfer equations. The two-flux predictions

of the total heat flux arc within about 2% of the numerical solution.

Results for a Two-Layer Composite with Two-Flux Method
in the First Layer and Diffusion in the Second Layer

In Fig. 5a the two layers are gray with a_D, = I, and a2D 2 = tOO.

The diffusion method can bc applied with good accuracy in the second

layer. Temperature profiles are shown for T,=/T=, in the range 0.8 to
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FIG. 5 TEMPERATURE DISTRIBUTIONS SHOWING

EFFECTS OF SURROUNDINGS TEMPERATURE USING
COMBINED TWO-FLU× AND DIFFUSION METHODS FOR

TWO-LAYERS: nl = 1.5, n2 = 3, C_rl = 0.84 - 1.44, _'r2 = 0-254,

t91= 1, t_ = 0.25, H1 = H2 = 1, NI = 0.1, N_= 1.
(a) BOTH LAYERS ARE GRAY: aiD1 = 1 and a2D2 = 100.
(b) FIRST LAYER HAS TWO SPECTRAL BANDS: a,ID, = 5,

ak,2D2= 0.1 with cutoff vJ%T_ = 114000; SECOND LAYER IS
GRAY: a2D 2 = 100.
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FIG. 6 EFFECT OF THERMAL CONDUCTIVITY IN SECOND
LAYER ON TEMPERATURE DISTRIBUTIONS IN "I'WO
GRAY LAYERS USING COMBINED TWO-FLUX AND

DIFFUSION " nl = 1.5, n2 = 3, _rl = 1.34, _°r_ = 0.254, t_l = 1,
t_= 0.25, H_ = H== 1, N_ = 0.1, N2= 0.1, 1, 10.

1.4. For comparison two cases arc given from the numerical solution

of the radiative transfer equations; very good agreement is obtained.

This, and the ability of the itcrative combined two-flux diffusion
solutionsto convergereasonably well, shows that the two-flux method

can be used quite well in layers that arc not too optically thick (_:_ <
-20), and the solution joined to the diffusion method in an adjacent

optically thick layer.
The general behavior of the results in Fig. 5a arc similar to those

discussed for Fig. 2. Decreasing the temperature ratio T,_/T_
decreasestic ovcraUtcrnpcmturc in the layer while the profiles remain

similar. There is a change in slope from positive to negative at the hot

gas interface when T,_/Ts_ is about 1.1. For a large optical thickness
in tic secondlayerradiative transmission is diminished and conduction

hasan important effect. This leads to profiles in the second layer that
tend to be more linear.

In Fig. Sa both layers arc gray, in Fig. Sb results arc given for the
first layer having two spectral bands so that for small v, v_/coT _, <
]/4000, a,sD _ = 5, while for large v, vr/coTs_ > 1/4000, a,_D_ = 0.1.

The selected value of the cutoff frequency v¢ divides the blackbody

specVum at T_, into approximately two equal parts. The results have

the same general behavior as in Fig. 5a and the two-flux method is
again in good agreement with the numerical solutions of the radiative

transfer equations.
The results in Fig. Sa are extended in Fig. 6 to show the effect of

changing tbe tbermal conductivity in the second layer. The conduction

parameter is N_ = l in Fig. 5a, and this is compared in Fig. 6 to results

forN_= 0.1 and lO. A largeN_ enhanccs conduction through the
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second layer and results in reduced temperatures in the first layer
including a reduced temperature at the surface exposed to the hot
environment.

Effect of Scattering in the First Layer of a Two-Layer
Composite Using Combined Two-Flux and Diffusion
Methods

The results in Figs. 5 and 6 are without any scattering. Figure 7
shows the effect of having large scattering so the scattering albedo QI
is from 0.9 to 1.0 (the limit with no absorption). The results are
comparedwith the case for absorption only, Q_ = 0. Since the optical
thickness is kept constant, increasing the albedo corresponds to
decreased absorption and the temperature profile in the first layer
approaches a straight line for conduction only. There is radiation
going from the hot side environment through the first layer and then
being absorbed at the internal interface; for very large scattering the
temperature maximum is then at or near the internal interface. The
resultsshow good agreement with numerical solutions of the transfer
equations indicating that scattering can be included with good
accuracy in the two-flux method.

CONCLUSIONS
The prediction of temperature distributions and heat transfer is

carried out in composite semitransparent layers heated on both sides
by radiationand convection. The external conditions are such that the
boundary temperatures are not specified and must be determined by
the solution. The layers in the composite have differing refractive
indices that are larger than one, and isotropic scattering is included.
Two methods were developed for performing spectral calculations in

multilaycrcd composiles. The two-flux method was developed for
multilayer composites of three layers and was found to give good
agreement with exact numerical solutions for all conditio,ls considered.
When one layer in a composite is optically thick the theory was
dcveloped to use the diffusion method in that layer and join it to the
two-flux method used in the other layers. This gives better
convergence than using the two-flux method in an optically thick layer•

When the hot surroundings areat a different temperature than the

gas on the hot side, there can be large temperature gradients near the
hot side surface that can cause thermal stresses. If the hot
surroundings are at a higher temperature than the gas on the hot side,
the maximum temperature can occur in the interior of the material
rather than at the surface. This can be important if the material is

operating near its upper temperature limit for adequate strength.
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